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Effect of added copolymer on the critical properties of polymer mixtures
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Monte Carlo simulation and finite-size analysis are used to determine the critical properties of a binary
homopolymer blend and of a polymer blend that has been compatibilized with a random copolymer. Determi-
nation ofn, the critical exponent for the correlation length, for the mixture of two homopolymers shows that
the binary blend exhibits properties that are consistent with Ising behavior (n50.63). Similar results for the
compatibilized blend show that the added copolymer acts very much like an impurity; lowering the mixing
transition temperature and increasing the value ofn to a value that is in qualitative agreement with Fisher
renormalization (n50.69). These results are important as copolymers are often added to polymer blends to act
as compatibilizers. These results, therefore, show that the analysis of the phase behavior of these mixtures must
be analyzed with the understanding that its critical exponents differ from those of a binary polymer mixture.
@S1063-651X~99!19310-3#

PACS number~s!: 61.25.Hq, 64.60.Fr, 05.10.Ln, 05.70.Jk
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INTRODUCTION

The critical behavior and classification of the universal
class of polymer mixtures has been an area of much atten
recently@1–17#. This area is of interest from a fundament
point of view, but also has implications in the commerc
use of polymer mixtures. It is well known that mixtures
two polymers obey the mean field approximation over a w
range of temperatures and concentrations@18#. However, it is
expected @1,2#, and has been confirmed experimenta
@3,4,7–12#, that near the critical point, binary polymer mix
tures will crossover from mean field to three-dimensio
~3D! Ising behavior. This crossover can result in an inac
rate determination of the critical temperature by extrapo
tion procedures assuming mean field behavior. The crit
behavior of ternary polymer mixtures containing a copo
mer and two homopolymers has been less studied. It is
pected from Fisher renormalization@19–25# that a binary
mixture that is diluted~and thus a ternary mixture! will have
slightly higher critical exponents~for example,n858/7n,
wheren8 is the renormalized critical exponent for the corr
lation length! than the binary mixture. Fisher renormalizatio
has beenqualitatively verified for small molecule ternary
mixtures@21–24# and polymer blends that have been dilut
by a solvent@11,15,16#. It is not clear that a diluent that i
polymeric in nature and consists of identical monomers
the homopolymers will alter the critical behavior of a ‘‘d
luted’’ polymer blend in a similar way. This work seeks
answer that question and provide fundamental informa
on the critical behavior of a ternary polymer blend conta
ing two homopolymers and a statistically random copolym

Monte Carlo methods have proven useful in determin
the order and critical behavior of pure systems and mixtu
including polymer blends@26–31#. For example, Sariban an
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Binder @26# have utilized Monte Carlo simulation and finite
size scaling techniques to obtain the critical exponents
critical amplitudes of the phase separation process of a la
model and compared it to the Flory-Huggins theory. Th
results confirm that a Monte Carlo lattice model exhib
critical exponents that are the same as those for the th
dimensional Ising model. They were not able to observe
expected transition to mean field critical behavior, whi
they attributed to the small chain lengths that were utilized
their study. These results do show, however, that a Mo
Carlo model of a binary polymer blend can be expected
exhibit Ising behavior, much like a real system near the cr
cal point and this can be verified using finite-size scal
techniques.

Industry has often utilized mixing of two~or more! poly-
mers to develop new materials with targeted properties.
combining two polymers with diverse properties, it may
possible to create a new material that retains physical c
acteristics of both polymers. However, it is also well know
that two long chain molecules will rarely mix on a therm
dynamic level due to their low entropy of mixing. The re
sultant two-phase structure will have inferior properties
the initial components, primarily due to the presence o
sharp biphasic interface that does not provide entanglem
between the polymers in the separate phases. This lac
entanglement across the interface results in poor transfe
stress, which in turn degrades the macroscopic propertie
the mixture. Due to the importance of the presence of a
phasic interface on the ultimate properties of a polym
blend, the ability to improve and control that interface h
been extensively examined@32–73#. In particular, the effect
of adding a copolymer to act as an interfacial modifier h
received abundant attention. Much of this work has cente
on the ability of a copolymer to strengthen the biphasic
terface, lower interfacial tension~to create a finer disper
sion!, and inhibit coalescence during processing. Each
these mechanisms apparently contributes to the improvem
4545 © 1999 The American Physical Society
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4546 PRE 60M. D. DADMUN AND DEAN WALDOW
of macroscopic properties of biphasic polymer blends up
addition of a copolymer and the importance of each has b
the subject of some debate in the literature.

Therefore, the effect of an added copolymer on the pr
erties of a polymer mixture is of current interest. This pap
reports results of an investigation which utilize finite-si
analysis and Monte Carlo simulation to determine the criti
exponents of the phase separation transition that occur
binary ~two homopolymers! and ternary~two homopolymers
and a statistically random copolymer! polymer mixtures on a
cubic lattice. These results will determine how the addit
of the copolymer alters the critical exponents of the ph
separation process. This, in turn, provides fundamental in
mation that can be utilized in the analysis of the phase se
ration of a polymer blend that has been compatibilized w
a copolymer.

MODEL AND SIMULATION METHOD

The model system consists ofNp chains of lengthN
510 confined to a cubic lattice. This length was chosen
maximize computational efficiency, while still providing be
havior that has been shown in previous simulations to e
late polymers. To simulate an infinite set of chains, the s
tem is approximated as a set of infinitely many identical ce
of length L with periodic boundary conditions in all thre
orthogonal directions (x,y,z). In this study, the only inter-
action energy is a nearest neighbor monomer-monome
teraction«A–B . This energy is positive if two neighborin
monomers are of different type~A-B! and is zero otherwise
In other words,A-A, B-B, A-void, or B-void arrangements
have a zero energy whileA–B alignments contribute a pos
tive energy.«A–B applies to any two adjacent monomer
whether a bond connects them or not. Steric interactions
included as excluded volume; simultaneous occupation
given lattice site by more than one monomer is prohibit
The density of the system is held constant for all lattice si
and is calculated as the fraction of occupied lattice sitesr
5NpN/L3. Np andN are defined as above andL is the size
of the cubic lattice. In the present study,Np andL are varied
such thatr581.2560.04 % andL ranges from 16 to 30.

Adding the polymers to the lattice in a completely order
state creates the initial configuration. One half of the h
mopolymers are of typeA and half are typeB. The percent
copolymer present ranges from 0 to 10 %. The composi
of the copolymer is 50%A and 50%B. It is interesting that
given this model, the number ofA and B monomers in the
system does not change as a copolymer is added, jus
way that they are bonded together is altered. The sequ
distribution of the copolymer is parametrized byP @74#, de-
fined as the percentage of the neighboring monomers a
the copolymer chain which are of the same type. This res
in the correlation betweenP and the copolymer structure a
listed in Table I.

Once the initial configuration is created, applying a mo
fied reptation technique@75# to the chains creates variou
chain configurations. In this modified reptation technique
void on the lattice is chosen at random. A direction from th
void is then selected randomly. If the end of a chain resi
on that lattice point, the polymer chain is reptated into
void and the other end of the chain is vacated. In this way
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configuration of the polymer chain changes and the void
displaced. The new configuration is accepted according
the Metropolis sampling technique@76#. To ensure there is
no bias due to the initially ordered state, the system is equ
brated through 10 000 system configurations before statis
for the system characterization is calculated.

The phase behavior of the mixtures is characterized by
heat capacity,Cv and the reduced fourth-order cumulantUL
of the system. The heat capacity is calculated as the fluc
tion in the total energy of the system:

Cv5@^E2&2^E&2#, ~1!

where^ & denotes the ensemble average.E is the energy of
the system and is equal to the number of neighboring mo
mers that are of different type. The miscible-immiscible tra
sition temperature is determined as the temperature at w
the heat capacity peaks in a plot of heat capacity vs temp
ture. The reduced fourth-order cumulant of the order para
eter is defined as

UL512^M4&/~3^M2&2!. ~2!

In this equation,M is the order parameter, which in a mixtur
of two types of molecules can be defined as the differe
between the percentage of neighboring lattice site pairs
contain the same types of monomers and the percentag
neighboring lattice site pairs that contain different types
monomers.

M5S2D, ~3!

whereS is the percentage of neighboring sites on the latt
that contain monomers of the same type andD is the per-
centage of neighboring sites on the lattice that contain mo
mers that are different. Examination of this equation sho
that in the phase-separated state, most neighboring m
mers will be of the same type,S will approach 1 andD will
approach 0. This gives a value of the order parameter
proaching 1. In the miscible state, there is equal probab
that neighboring sites will hold similar or different mono
mers, and thereforeS→0.5 andD→0.5, thusM goes to
zero.

In a small molecule mixture, this order parameter w
provide accurate information on the mixing process. Ho
ever, with polymers, the connectivity of the polymer cha
will bias this calculation. For a homopolymer chain, two
the neighboring lattice sites must contain monomers of
same type because they are the next and previous mono
along the chain~except for chain ends!. Therefore, to over-
come this bias, Eq.~3! is still used, however, the definition o
S and D is altered. Rather than utilize the nearest neigh
lattice sites to compare monomer types, the calculation

TABLE I. Correlation betweenP and copolymer sequence dis
tribution. N denotes molecular weight of the copolymer.

Copolymer sequence distribution P

Block copolymer N/(N21)'1
Random copolymer 0.5

Alternating copolymer 0
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based on two lattice sites that are slightly farther apart. T
choice of the distance between the two lattice sites is a
ance between wanting a larger distance to minimize effe
of chain connectivity versus needing a smaller distance
minimize the effect of the biphasic interface on the calcu
tion. Essentially, when the system is phase separated
biphasic interface in the phase separated system limitsM to
values less than 1. Increasing the distance between the
pared sites effectively broadens the interface and exacerb
this problem. In this study, it was found that a distance
five lattice sites between compared lattice sites offere
good compromise of these two factors and was thus use
the calculations of the following results.

To minimize statistical deviation, each point in the fo
lowing figures is an average of at least 7.53106 Monte Carlo
steps per chain in the vicinity of the phase transition and
least 2.03106 Monte Carlo steps per chain far from th
phase transition. This simulation was completed on m
computers including a DEC Alpha 400/266 in the Chemis
Department at the University of Tennessee, two Silic
Graphics Indigo2 computers in the Chemistry Departmen
Pacific Lutheran University, and an IBM SP/2 at the Jo
Institute of Computer Science at the University of Tenn
see. The program was run with vector processing when p
sible and maximum optimization on all machines.

RESULTS

In recent publications@74,77#, one of us utilized this
Monte Carlo model to examine the effect of the copolym
sequence distribution on the phase behavior and interfa
structure of a ternary blend containing a copolymer and
homopolymers. The results generally show that,
strengthen the biphasic interface, it is preferable that the
polymer be ‘‘blocky’’ rather than random or alternating
nature. It was also seen that the phase transition temper
for the ternary mixture did not depend on the sequence
tribution of the added copolymer, merely on the amou
More exactly, the temperature at which demixing occurs
creases with an increase in copolymer concentration, h
ever, at a given copolymer loading there was no observa
difference between the different copolymer structures~block,
random, or alternating!. This trend is shown in Fig. 1 which
plots the heat capacity vs reduced temperature,t
5kbT/«A–B for the blend of the two homopolymers and th
ternary mixtures which contain 1, 5, 7.5, and 10 % rand
copolymer. The lines in this figure are included to guide
eye. Inspection of this figure shows that as the concentra
of the copolymer increases, the peak maximum of the h
capacity and transition temperature both decrease.

From the data in Fig. 1, a plot of the transition tempe
ture as a function of copolymer concentration can be crea
as shown in Fig. 2. This figure shows that the decreas
phase transition temperature decreases linearly with
creased copolymer concentration, much as an added
impurity ~i.e., dilution! will alter the phase transition tem
perature of a pure sample. This result is interesting, howe
it does not provide information on how the copolymer affe
the natureof the phase transition. For this, finite-size ana
sis is needed.

In a theoretical infinite system a first order phase tran
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tion is characterized by a discontinuity in the first derivativ
of the free energy. This results in ad function singularity in
the heat capacity, the second derivative of the free ener
This divergence is a consequence of the coexistence of
phases. The system does not anticipate the transition
there is no critical region or critical exponents. In seco
order phase transitions, there is a power law divergence
the heat capacity, but this divergence is a consequence o
correlation length becoming infinite. The system anticipa
the transition and a critical region and critical exponents a
found. In real finite systems this divergence does not occ
Finite-size effects cause the divergence to become a fi
peak. There are two effects, a rounding of the peak w
decreasing sample size and a shifting of the peak with
change in sample size. In second order phase transitions
shift of heat capacity peak is due to the limitation of th
correlation length to the lattice size,L. Scaling theory
@78,79# therefore predicts that the heat capacity maximu
Cv

max will diverge asLa/n while the transition temperature
will shift as

~Tc* 2Tc!/Tc* ;L1/n, ~4!

FIG. 1. The effect of a copolymer loading on the heat capac
peak for the mixing-demixing transition of a compatibilized poly
mer blend.

FIG. 2. The change in the mixing-demixing transition temper
ture with copolymer concentration in a compatibilized polym
blend.
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whereTc is the transition temperature of the finite syste
Tc* is the transition temperature of the infinite system,a is
the heat capacity critical exponent, andn is the correlation
length critical exponent.

Therefore, one way to determine the critical exponents
a model phase transition is to perform finite-size analysis
the system by determining how the heat capacity peak
the transition temperature change with lattice size. Using
change in the heat capacity maximum is not feasible in
study due to the significant error in determining the h
capacity maximum. Additionally, in completion of thi
analysis using the transition temperature, it becomes ne
sary to determine the transition temperature at infinite s
(Tc* ). In practice,Tc* is often determined using finite-siz
analysis, i.e., the transition temperature is determined a
function of lattice size,Tc is plotted vs 1/Ln, and extrapo-
lated to 1/Ln→0[L→`. Thus, we are left with the chicke
and the egg problem;n is required to determineTc* andTc* is
also needed to determinen. Fortunately, there exist othe
methods by whichTc* can be evaluated. The most straigh
forward is using the reduced fourth-order cumulant@26,29–
31#. It can be shown@26,30# that UL scales with (1
2T/Tc* ) andL1/n as

UL}~12T/Tc* !L1/v;T→Tc* ,L→` ~5!

which implies thatUL(T5Tc* )5U* which is independen
of L. Therefore a plot ofUL vs temperature for differen
lattice sizes,L, will produce a series of curves which inte
sect atTc* , the transition temperature for an infinite syste

Figure 3 shows the plot ofUL vs t for a 50/50 binary
blend of the two homopolymers~A and B! while Fig. 4
shows the same plot for a ternary blend containing a
60.08 % random (P50.5) copolymer and an equimola
mixture of homopolymersA andB. On first inspection it is
evident that the curves for different lattice sizes do not
intersect at a single point. This is due to a number of reas
but most importantly that the scaling denoted in Eq.~5! only
holds for L→`. The lattice sizes that were examined he
obviously do not approach this limit. Nevertheless,Tc* can

FIG. 3. The behavior of the fourth-order cumulantUL near the
transition temperature of the infinite systemTc* for the binary ho-
mopolymer blend.
,
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be estimated with modest error to be 9.460.1 for the binary
system and 9.160.1 for the ternary system from the data
both plots.

With this knowledge ofTc* , the data can be analyzed t
determine the critical exponentn for the two systems and
thus the nature of the phase demixing transition that occ
in a blend with and without added copolymer compatibiliz
Figure 5 is a plot of ln@(Tc*2Tc)/Tc* # vs ln(1/L), where val-
ues of 9.4 and 9.1 forTc* were used in the binary and terna
polymer blend, respectively. Examination of Eq.~4! shows
that the slope of this plot is equal to 1/n. This analysis pro-
vides a value ofn50.63 for the binary andn50.69 the
ternary mixture~see Table II!.

It should be noted that the value ofn that is determined
from Fig. 5 is very sensitive to the value ofTc* that is used.
Plots similar to Fig. 5 can be produced using values ofTc*
which range from 9.0 to 9.5. Completing this analysis us
values of Tc* within the ranged delimited by the vertica
dashed lines in Fig. 3 and 4 demonstrates that the error
exists in determiningTc* propagates to an error of60.02 in
the value ofn.

FIG. 4. The behavior of the fourth-order cumulantUL near the
transition temperature of the infinite systemTc* for the ternary
~compatibilized! polymer blend.

FIG. 5. The finite-size analysis plot. The slope of this plot
ln@(Tc(L)2Tc* )/Tc* # vs ln(1/L) is equal to 1/n, wheren is the critical
exponent for the correlation length.
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Thus, the addition of a copolymer does change the crit
exponents of the miscible-immiscible phase transition in
binary polymer blend. The change is in qualitative agreem
with Fisher renormalization, though is slightly lower than t
predicted value. Renormalization predicts that the expon
will increase by a factor of 1/7, which would result in a valu
of n50.72.

Interestingly, the value determined in this study is ve
close to the experimental value ofn50.68 found by Hair
et al. for a polymer blend that was diluted by a small mo
ecule @11#. Finally, these results also emphasize that
phase separation behavior of a ternary polymer mixture c
taining two homopolymers and a copolymer must be a
lyzed with the knowledge that its critical exponents diff
from those of a binary polymer blend.

TABLE II. Predicted and observed values forv.

Correlation length
Critical Exponentv

Binary system Ternary system
~Fisher renormalization!

This study 0.63~60.02! 0.69 ~60.02!
Theory ~Ising behavior! 0.63 0.72

experimental 0.63@80# 0.68 ~6.0.2! @11#
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CONCLUSION

Finite-size analysis and Monte Carlo simulation ha
been completed to determine the critical exponentn, of the
demixing phase transition in a binary mixture of two h
mopolymers as well as a ternary mixture of two homopo
mers and a copolymer. A copolymer is often added to
polymer mixture to improve the miscibility and ultimat
properties of the resultant blend. The analysis shows that
critical exponentn of the binary blend is compatible with
Ising-like behavior (n50.63). However the critical exponen
n of the ternary mixture is slightly higher than that of th
binary blend (n50.69) in qualitative agreement with Fishe
renormalization. These results suggest that the addition
copolymer to a polymer mixture slightly changes the nat
of the phase decomposition process of that mixture and m
be analyzed accordingly.
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@56# R. Fayt, R. Je´rôme, and Ph. Teyssie´, J. Polym. Sci., Polym.

Lett. Ed.19, 79 ~1981!.
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